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OPTIMAL CONTROL AND NONLINEAR FILTERING FOR

NONDEGENERATE DIFFUSTION PROCESSES
by

L Wendell H. Fleming and Saniov K. Mitter

Abstract

A linear parabolic partial differential equation describing the pathwise filter
for a nondegenerate diffusion is changed, by an exponential substitution, into
the dynamic programming equation of an optimal stochastic control problem. This
substitution is applied to obtain results about the rate of decay as |x| > «
of solutions p(x,t) to the pathwisc filter equation, uand for solutions of

the corresponding Zakai equation.
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1. Introduction We consider an n-dimensional signal process x(t) =

(xl(t),“‘,xn(t)) and a 1-dimensional observation process y(t), obeying

the stochastic differential equations

(1.1) dx = bx(t)]dt + o[x(t)]dw

(1.2) dy = h{x(t)]dt + dw, y(0) = O,

with w, w independent standard brownian motions of respecctive dimensions
n, 1. (The extensions to vector-valued y(t) need only minor modifications.)
The Zakai equation for the unnormalized conditional density q(x,t) is

*
(1.3) dq = A qdt + hqdy, t > 0,
where A 1is the generator of the =ignal process x(t) . See [3] for
example. By formally substituting
(1.4) q(x,t) = exp [y(t)h(x)]p(x,t)
one gets instead of the stochastic partial differential equation (1.3) a
linear partial differential equation of the form

(1.5) p, = gtrap, + g (x,0 p, + Vix,0p, t>o,

with p(x,0) = po(x) the density of x(0). Here

a(x) = O(X)G(X)' s Px =(\Px ’———>px )
1 n
n
tr a(x)pxx = 1 aij(x)px.x .
i,j=1 17

Explicit formulas:for g7, v’ are given in §6. Equation (1.5) is the

basic equation of the pathwise theory of nonlinear filtering. See [2] or
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{l0]. The superscript y indicates dependence on the observation trajectory

y = y(+). Of course, the solution p = p'v also depends on vy

We shall impose in (1.1)the nondegeneracy condition that the n X n
matrix o(x) has a bounded inverse O-I(X). Other assumptions on b,
o, h, p0 will be stated later. C(ertain unbounded functions h are
allowed in the observation equation (1.2}. For example, h can be a

polynomial in x = (x;,---,x ) such that [Th(x)! » o as [x] »e .

The connection between filtering and control is made by considering the
function S = -log p. This logarithmic transformation changes (1.5) into
a nonlinear partial differential equation for S(x,t), of the form (2.2)
below. We introduce a certain optimal stochastic control problem for
which (2.2) is the dynamic programming equation.

In §3 upper estimates for S(x,t) as |x| -« are obtained, by
using an easy Verification Theorem and suitably chosen comparison controls.
Note that an upper estimate for S gives a lower estimate for p = -log S.
A lower estimate for S(x,t) as [x| + = is obtained in §5 by another
method from a corresponding upper estimate for p(x,t). These results are
applied to the pathwise nonlinear filter equation in §6.

Related results have been obtained using other methods by Baras,
Blankenship, and Hopkins [1] and by Sussmann [12]. A connection between
control and nonlinear filtering was also made by Hijab [8], in a somewhat

different coatext.

2. The logarithmic transformation. Let us consider a linear parabolic

partial differential equation of the form
1
(2.1) Py = Etrsix)pxx + g(x,t)-px + V(x,t)p, t>0,

p(x,0) = p’(x).

When g = gy, vV = V7 this becomes the pathwise filter equation (1.5), to

t? D

o

PR S




which we return in §6. By solution p(x,t) to {(2.1) we mean a

2,1 . . .
"classical" solution pe C°’7, i.e. with pX , P , pt continuous,
i .

X.X
1]

i, 3 = 1,777 ,n.

If p 1is a positive solution to (2.1), then S = -log p satisfies

the nonlinear parabolic equation ]

bl

(2.2) S, =

N trz{x)sxx + H(x,t,Sx), t>0 ?
]

sx,0) = s%(x) = -log p (),

L

1 = . - t 4 -
H\x,t,Sx) g(x,t) Sx 2Sx a(x)Sx Vix,t).

Conversely, if S(x,t) 1is a solution to (2.2), then p = exp(-S) is a
solution to (2.1).
This logarithmic transformation is well known. For example, if
g =V = 0, then it changes the heat equation into Burgers' equation [9].
n

1’ with ty fixed but arbitrary. Let Q =R

We consider 0 < t <t
% [O,tl]. We say that a function ¢ with domain Q 1is of class & if
? 1is continuous and, for every compact K € Rn, $(*,t) satisfies a

uniform Lipschitz condition on K for 0 < t < t We say that ¢

1
satisfies a polynomial growth condition of degree r, and write ¢ 6_91, ;

if there exists M such that

lox, )| < M(1+]x]T), all (x,t) € Q.

Throughout this section and §3 the following assumptions are made.

Somewhat different assumptions are made in §'s 4,5 as nceded. We assume:

(2.3) g ,o0 are bounded, Lipschitz functions or RM,




For some m

| v
—

(2.4) €Y NP, veFnA2 .
m 2m

For som~ £ > 0

"
(2.5) soec“n% .

For some Ml’

(2.6) veot) <M, 5P > M

1 1

We introduce the following stochastic control problem, for which
(2.2) is the dynamic programming equation. The process §&(t) being

controlled is n-dimensional and satisfies

(2.7) & = u(1),TdT + of§(T)]dw , 0 < T < t,

X,

£(0)
The control is feedback, R™-valued:
(2.8) u(T) = ui((M),n).
Thus, the control u is just the drift coefficient in (2.7). We admit
any u of class & n éﬂ.. Note that u €% implies at most linear

growth of |u(x,t)| as I[x] +« . For every admissible u , equation

(2.7) has a pathwise unique solution & such that E]!éf}: < o for cvery

r > 0. Here || ||t is the sup norm on [0,t].
Let
(2.9) Lix,t,u) = & (u-g(x,£))'a L) (u-e (x5, 1)) - V(x,t .




For (x,t) € Q and u admissible, let

ft., 0.
(2.10) st = e D Em e umia s LR
x

The polynomial growth conditions in (2.4), (2.5) imply finiteness of

I\

J . The stochastic control problem is to find u ' minimizing Jfx,t,u).

. . . o
H Under the above assumptions, we cannot claim that an admissible u P

exists minimizing J(x,t,u). However, we recall from [7,Thm. VI 4.1] the
following result, which is a rather easy consequence of the Ito differential

rule.

P PP T VPO 7¢ ¥

Verification Theorem. Let S be a solution to (2.2) of class

A
¢®la P, with S(x,0) = $°(x). Then

(a) S(x,t) < J(x,t; u) for all admissible u .

o

(b) If g?p =g - aSt is admissible, then S(x,t) =

Jix,t; uP).

In §3 we use (a) to get upper cstimates for S(x,t), by choosing
judiciously comparison controls. For E?p to be admissible, in the sense

we have defined admissibility, |S ' «can grow at most lincarly with 'x

hence S(x,t) can grow at most quadratically. By enlarging the class of
admissible controls to include certain u with faster growth as !x| + =
one could generalize (b). However, we shall not do so here, since only part
(a) will be used in §3 to get an estimate for S.

In §4 we consider the existence of a solution S with the polynomial
growth condition required in the Verification Theorem.

As in [6] we call a control problem with dynamics (2.7) a problem of
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stochastic calculus of variations. The control u(§(7),7) is a kind
of "average'" time-derivative of &(T), replacing the nonexistent derivative
$(1) which would appear in the corresponding calculus of variations

problem with T = Q.

Other control problems. There are other stochastic control problems

for which (2.2) is also the dynamic programming equation. Onc choice,
which is appealing conceptually, is to reguire instead of (2.7)that 45 (7%)

satisfy
(2.11) @ = {580, « uB L far - e s
with &§(0) = x. We then take

(2.12) LeGtu) = 2 ua lou - vix, ).

1o

The feedback control u changes the drift in (211) from g to g + u.

. : 1 2 . .
When a = identity, L = ;-[ul - V(x,t) corresponds to an action integral

in classical mechanics with time-dependent potential V(x,t).

3. Upper estimates for S(x,t). In this section we obtain the following

upper estimates for the growth of S(x,t) as !x' -+ = in terms of the

constants m> 1, £ > 0 in (2.4), (2.5).

Theorem 3.1 Let S be a solution of (2.2) of class o=l n.ﬁi, with

s(x,0) = So(x). Then there exist positive Ml’ M, such that:

(i)  For (x,t)€Q, S(x,t) < M, (1+ |x|®) with & = max(m+1,0).
Eor =M

(ii) Let 0< ty<t; ,m> 1. For (x,t) € R™ x [tyt,],

S(x,t) < M, (1+]x!™1)

.

A e S




The constant Ml

1

polynomial growth as

denends on

Ix!

+ ® with some degree 7.

that rt «can be replaced by

Purely formal arguments suggest that

confirmed by the lower estimate for

Proof of Theorem 3.1.

and (2.9),

(3.1)

for some Bl‘ Given

u(t), 0 < T <t., Let

L(x,t,u) < Bl[1+'x¢

s00 < B0 x19)

tl'

t.. In the hypotheses of this theorem,

and M

N

S(x,t)  is assumed to have

The theorem states

¥, or indeed by m+l provided t > t, >

m+1

S(x,t)

0
is best possible, and this is

made in 5.

We first consider m > 1, Rv (2.3)-72.0)

x € R"

u(t) =

the differential equation

(3.2)

with n(0) = x.

(3.2) we find, since

0

0

n

From (2.7)

i -

2 ~
<Myl
N

uo)

we choose the following open loop control

N(7), where the components hitf}, satistfy

(1) = n(m) + &(D)

5(1)

m > 1, that

t
J ﬂi(T)zde.§

0

m

1
I

+1

t -
Ef lg(T)'Zm dTi zum J(t!q(THZm

i
lo
Since 0 1is bounded, E[|§!]: <

m

(sgn xi){ﬂif i=1,7"",n,

, 0< T,

o5 () Jdw(5).

for each r.

‘m+1
X

dt + E

|

t

0

1 ‘m+1
el Ix]

b

L0 du <M.‘(1+[me+1 )

depends oon both 4 and

N

By explicitly integrating

.




for some M

37 .
Sinc u2 =n, =n
ince u; =n; =N,
t
( !u(r)!zdr < —
JO -

Since !n(t)! < Ix!,

Bemld <e(xl <amnb<c e xt)
for some K . From (2.10), (3.1) we get

J(x,t,u) < Ml(l+[x‘p), o = max(m+1, {)

for some Ml' By part (a) of the Verification Theorem, S(x,t) < J(x,t,u},

which implies (i) when m > 1.

For t > tO > 0, |7(t)] 1is bounded by a constant not depending on

x = n(0). Since §(t)

n(t) + 5(t), and Ex!;(t‘{ ¢ is bounded, this
bounds EXSO[E(t)] by a constant not depending on x . The estimates above

and part (a) of the Verification Theorem then give (ii).
It remairns to prove (i) whemn m = 1. Consider the ''trivial" control
u(t> = 0. When m=1, g grows at most linearly and V at most

quadratically as |x! -« . Moreover, E HE||§ < K(l+|x]2) for some K.

Using again (a) of the Verification Theorem, we get again (i) with g =
max(2,£). ([When m = 1, this is a known result, obtained without using

stochastic control arguments.]

4. An existence theorem. In this section we give a stochastic control

proof of a theorem asserting that the dynamic programming equation (2.2) with

dallis;




the initial data s’ has a solution § . The argument is essentially
taken from [4, p. 222 and top p. 223.] Since (2.2) is equivalent to
the linear equation (2.1), with positive initial data po, once could get
existence of S from other results which give existence of positive solutions
to (2.1), see [11]. However, the stochastic control proof gives a
polynomial growth condition on S wused in the Verification Theorem (£2}.

Let 0 <« < 1. We say that a function 9 with domain ¢ 1is of class

Cu if the following holds. For any compact T < Q, there exists M such

that (x,t), (x',t') € T imply

/2 ' '
(4.1) lo(x",t') - 00,t)] < M{jer-tl® L k¥,
W that ¢ 1 f clas CZ’1 if 2, 9 ¥ ¢ a f el
€ say a 18§ O class o 1 e xi s Yxixi; Yt Ire o €c14ss
Cy » 1, J=1, 777, n.

In this section the following assumptions are made. The matrix c(x)

. . . n
is assumed constant. By a change of variables in R we may take

(4.2) ¢ = identity
For fixed t , g(-,t), V(-,t) are of class Cl on R" , and
8 8, > v, Vx , i=1,---,n, are of class CJL for some & € (0,1].
i i
Moreover,
(4.3) lg(x,t)] < Y ¢ Y xI ™, om > 1,

with Y2 small enough that (4.8) below holds. (If ¢ E.gi with H < m,

then we can take Yz arbitrarily small.) We assume that

(4.4) aylxl™ - ay < Vo) < ad+ 1x)

i,

i e w it Bt ke Sl e M| e,




for some positive a;, a,, A and that

' ¥ ! 2
(4.5) 8x € ih’ \x € o 2m

We assume that SO € C3 n %, for some £ > 0, and

. 0
(4.6) dim ST = v e
(4.7 's% <80 e,

for some positive Cl’ C2 .

Example. Suppose that V(x,t) = -kVO(x) + Vl(x,t] with Vo(x) a
positive, homogeneous polynomial of degrec 2m, k > 0, and Vl[x,t) a
polynomial in x of degree <2m-1 with coefficients HOlder continuous
functions of t . Suppose that g(x,t) is a polvnomial of degree

< m-1 in x , with coefficients Holder continuous in t , and So(x)
is a polynomial of degrec { satisfving (4.6). Then all of the above
assumptions hold.

From (2.9), (4.2), L = %-!u-g! -V .. IfY, in (4.3) is small

enough, then

2 2m 2 om
(4.8) Bl(|u] +|x, ) - By < L(x,t,u) < B(1 +]u! +1x| )
for suitable positive 31, 82, B. Moreover,

Ly = g (u-g) -V,

1 2 2 1 2
Ll <5 ful™ + 1g |" + 5lg]”™ + V.| »

where [gx] denotes the operator norm of gy regarded as a linear trans-

formation on R" . From (4.3), (4.5), (4.8)
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(4.9) [Lx[ <L+ C,
for some positive Cl,C2 (which we may take the same as in (4.7).)

Theorem 4.1 Let r = max (2m,{). Then equation (2.2) with initial

data S{x,0) = So(x) has a unique solution S{x,t) of class C;’* n ,f;,

such that S(x,t) > as x| »° uniformly for 0 < t < t

Proof. We follow [4, §5]. Ffor k = 1,2,7°7, let us imposec the

constraint |u| < k on the feedback controls admitted as drifts in (2.7 ).

Let
(4.10) . Sk(x,t) = min J(x,t; u)
luf <k
2
Then Sk is a C&’l solution to the corresponding dynamic programming
equation
=1
(4-11) (Sk)t - 2 A sk + Hk(x)t,(sk)x))

H (6t,(5),) = min  (L(x,t,u)+{5 ) u].
u!ik

The initial data are again Sk(x,O) = So(x). The minimum in (4.10) is

attained by an admissible Eip . See [7, p. 172].

> """; and S is bounded below since L and S0 are

Now S1 Z.S K

2

bounded below by (4.6), (4.9). Let S = lim S . Let us show that (S,)
e k k' x

is bounded independent of k uniformly for (x,t) in any compact set.

Once this is established standard arguments in the theory of parabolic partial

‘) - - D
differential equations imply that S € C;’l and § satisfies (2.2). For

(s there is the probabilistic represcntatijon

k)x
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t
(4.12) (Sk)x(x.t) = Ex{f L5 (0,t-t ,u (10)]dt + Sg[ék(t)]},

0

where ¢, is the solution to (2.7) with u = gop, gk(O) = x, and

K
w (1) = Eip(ék(T),T)-

This can be proved exactly as in [4, Lemma 3]. Another proof, based on

differentiating (4.10) with respect to Xy i=l,-~", n, is given in

[5, Lemma 5.3). From (4.7), (4.9), (4.12)

S | < C,E kt LS (0)dt + sU[5 s C (1l
’(\k)x(x’t)i _<_ 1%x jo [Qk(I),t~T B uk )J T [5}\(t)] Z(t ))
or since E;p is optimal

|
(4.13) .(Sk)x(x,t)1.§ €5, (x,t) + C,(t+1)
Since Sk(x,t) is bounded uniformly on compact sets, (4.12) gives the
required bound for ](Sk)x} uniformly on compact sets.
For the '"trivial" control O, we have by (4.8) and S0 € E;}

J(x,t,0) < B,(1 + E|IENT) , r = max(2m, O)

for suitable B1 . When u(t) =0, ¢ =1, we have &(T) = x + w(7).

For suitable M we have

5, (x,t) < J(x,£,0) <M(1 + [x|T), k=1,2,77".

Hence S(x,t) satisfies the same inequality. Since S is bounded below,

this implies S €%,

Let us show that S(x,t)» « as |x| » , uniformly for 0 <t <ty

Since S, (x,t) = J(x,t; 5°P), (4.8) implies

k




-13-
t b
S () > BE, fo (o, (01«75 (017 Mdt - £t + 65%g (1))

Given A > 0 there exists R, such that {x] > R, implies So(x) > A,

by (4.6). Let R, > R, and consider the events

2 1
A s Clg - Xl < ry - R
1 [t
A= (U]l > 1w - R}
3 ft t -2 2 1

with || I]t the sup norm on [0,t]. Since :

£(D - x = v (D +w(D, 0 <1<, f

c 1 é

A1 I A2 u AS . For R2 -~ R1 large enough, P(AS) <7 and hence é
P(Al) + P(A2) Z_é-. From Cauchy-Schwar:z

LR - r%PA,) < tE ft}u (8 )%ds
7 Ry - &y 2 2% :
et x| >R, . On A, [§(t)] >R and hence S[g (©)] > X . For x| >R,
s, (x,t A . R )ZP(L,) + AP(A ot o+
ko) 2 gy Ry - RDTPQY) « AP@AY) - (KE + &)

with 83 a lower bound for So(x) on R". Since the right side does not

depend on k , S satisfies the same inequality. This implies that
S(x,t) » » as |x| » o , uniformly for 0 <t f-tl .

To obtain uniqueness, p = exp(-S) is a Ci’l solution of (2.1), with

p(x,t) +0 as |x| >~ uniformly for 0 <t <ty Since V(x,t) is bounded
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above, the maximum principle for linear parabolic equations implies that
p(x,t) is unique among solutions to (2.1) with these properties, and
with initial data p(x,0) = po(x) = exp [—So(x)]. Hence, S 1is also
unique, proving theorem 4.1.

It would be interesting to remove the restriction that U = constant

made in this section.

5. A lower estimate for Six,t) . To complement the upper estimates

in Theorem 3.1, let us give conditions under which S(x,t) - +°  as

! ym+]
|

{x[ + o at least as fast as |x| , m > 1. This is done by establishing

a corresponding exponential rate of decay to 0 for p(x,t). In this

el
section we make the following assumptions. We take ¢ ¢ C7 with

-1

0> 0 > Ox. bounded, © € # i, j=1,""",n,
i X X T

(5.1)

R
for some r > 0. For each t , g(+,t) € C°. Moreover,

(5.2) g 6;%,u<m,gx_ev;, gxx.EJ;,
i 1]
and g, By.» 8x x are continuous on Q. For each t , V(s,t) € C2
i i%3

Moreover, V satisfies (4.4),

(5.3) vV €L, v € P,
X. T . T

and V, Vx s Vx 5. are continuous on Q . We assume that PO € C2
. . q

1 i%3

and that there exist positive B , M such that
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m+1

- R
(5.4) exp [B'x X
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Theorem 5.1. Llet p(x,t) be a C"’1 soluticn to (2.1) such that

p(x,t) >0 as |xj ~= , uniformly for 0 <t <t Then there exists

1

¢ >0 such that exp[ﬁlx[m+l]p(x,t) is bounded on Q .

Proof. Let

m+1
2

(a+!x1%) 2, ) - exp [Sr(x)]p(x,t).

v(x)

"

Then T 4is a solution to

1
. = = tr ; + » +
(5.5) nt 5 T qnxx g Ty Vm ,

oo |
"

- a'!
g-34 ¥y

<]
it

Y s | 1 2 . i 6
V- fg ¥ s (STav -y -Stray )

By [11, Theorem 1], cquation (5.5) with initial data

0 - exp(GW)po has for small enough ¢>0 the probabilistic solution

t T .
(5.6) T(x,t) = E‘{”O[X(tﬂexp f (o gaw -<%l°"gi“df +Vvdt ],
: 0
where X(t) satisfies i
\
(5.7) dX = O[X(T)]dw, 1 > 0,

with X(0) = x. In the integrands o-lg and V are evaluated at xX{v,n.
The proof in [11] that » satisfies {5.5) is done by approximating Q,G by
functions én’Qn’ for which the corresponding ;n tend to - boundedly
and pointwise. By standard estimates for partial derivatives to solutions

2
of linear parabolic partial differential cquations, - is C“’1 and

satisfies (5.5).
N . 2 .
Then P = exp(-&)F is a ¢>*! solution to (2.1}, with initial

data po > and with p(x,t) tending to 0 as |x! + w uniformly for :
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D<ct<t By the maximum principle,

L
exp [6[x!m+1]p is bounded on Q .
S

Since

S

Corollary. For some positive 6, )

y M+

(5.8) S(x,t) > 8l x

E 6. Connection with the pathwise filter equati

p = p which implies that

This proves Theorem 5.1.

-log p, we get by taking logarithms:

-9

1

on.

The generator A of the

2
signal process in (1.1) satisfies for % € C°

1
M = 2trale  * b(x)9, |
The pathwise filter equation (1.5) for p = py is #
(6.1) p, = (Ay)*p + Vyp, where
j Y4 = - .
! Mo = K - y(DaOh(X) « o
i
oy -1 2 1 2
VvV (x,t) = E—h(x) - v(t)Ah(x) + 5 y(t) hx(x)'a(x)hx(x).
Hence, in (1.5) we should take
n 9da,.
(6.2) g =-b+y(tdan +Yy, v, = 1 s+, §=1L-m,
X B . X,
i=1 j
a2
Y= W - div(b hy+ 1§ o
(6.3) V) = V) - div(b - y(t)a x) 3 .
i,J=1 i)
To satisfy the various assumptions about g = gy, v = Vv made
above, suitable conditions on o, b, and h must be imposed. To obtain
the local Holder conditions necded in 4 we assume that y(.) is Holder




continuous on {0,t]. This is no real restriction, since almost all

observation trajectories y(-) are Holder continuous.

To avoid unduly complicating the exposition let us consider only
the following special case. We take ¢ = identity, an assumption already
made for the existence theorem in §4. We assume that b € C3 with

b, bx bounded, and all second, third order partial derivatives of b

of class 9? for some r. Let h be a polynomial of degree m and SO

a polynomial of degree { , such that h =h + h,, § = S) * S, where

1

0 . . .
hl’ Sl are homogeneous polvnomials of degrees m,«,

. 0
(6.4) lin hy(x)] == , LimS/(x) =+,

X | x|

0
h is of degree <m and S, of degree <i.

o]

-

Then all of the hypotheses in g's 2-4 hold. In (6.2), g” has

polynomial growth of degree m-1 as |x! +® , while in (6.3)

VY is the sum of the degree 2m polynomial - %—h‘(x) and terms with

polynomial growth of degree < 2m.

Let 87 = -log py . From Theorem 3.1 we get the upper bounds

(i) $V(x,t) < Ml(1+’x!p), 0<t<t,,P=max(ml,£)

1

(1) 70t <M x™h, o<ttt

where M, , M

i depend on y . For pO = exp(~SO) to sutisfy (5.4)

2

we need £ > m+l . The Corollary to Theorem 5.1 then gives the lower

bound

ol




(6.6) SECHIIE

-, 0<tit

1

- e s Y . .
From (6.5Y(ii) and /¢.0) we sce that S (x,t) increases to +o like

+ . ~
!xim L , at least for m >~ 1 and t bounded away from 0 , and for

0 <t <« tl, in case € = m+]
Finally, gq

exp(y(t)h)p iz a solution to the Zakail equation. For

any 9 € Cb (i.e., ¢ continuous and bounded on Rn) let

L@ = smamnex,
I n
R
o rt 1 > -
A (o) = E{¢[X(t)}exp ; (h[x(D1dy - 5 hix(D]d) ez(y)} ,
Q0 =
o} o

where E denotes expectation with respect to the probability measure P

obtained by eliminating the drift term in (1.2) by a Girsanov transformation.

The measure At is the unnormalized conditional distribu-ion of x(t)

o
Then At is also a (weak) solution of thc Zakal eguation, with EAt(l) = 1.

By a result of Sheu [11, Thm. 4], At = A

¥

hlad Sl ok s stema . .
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